WELDING PROSES

Welding

Introduction 

A weld occurs when pieces of metal are joined by causing the interface to melt and blend prior to solidifying as a uniform metal joint.   This process may be caused by heat, pressure or a combination of both.   When heat alone is used the process is called fusion welding.

Pressure welding usually involves heating the surfaces to a plastic state and then forcing the metal together.   The heating can be by electric current of by friction resulting from moving one surface relative to the other.

The methods and equipment used for welding metal are also associated with cutting metal.   There are a large number of welding and allied processes including the following.
Welding Processs
Gas WeldingArc WeldingBrazingSolderingResistance WeldingSolid State WeldingOther Welding


Allied processes
Adhesive BondingThermal SprayingOxygen CuttingThermal CuttingArc CuttingElectron Beam CuttingLaser Cutting


Calculation relating to welded joints can be found on webpage... Weld Stress Calculations

Notes on drawing representations of welds can be found on webpage .. Drawing of Weld Symbols.


Manual Metal Arc Welding Process
Electric Arc welding is based on providing an electric circuit comprising the Electric current source the feed and return path, the electrode and the workpiece.  The arc welding process involves the creation of a suitable small gap between the electrode and the workpiece.   When the circuit is made a large current flows and an arc is formed between the electrode and the workpiece. The resulting high temperatures causing the workpiece and the electrode to melt    The electrode is consumable.   It includes metal for the weld, a coating which burns off to form gases which shield the weld from the air and flux which combines with the nitrides and oxide generated at the weld.   When the weld solidifies a crust is formed from the impurities created in the weld process (Slag).   This is easily chipped away.
MIG & TIG Welding
The Metal Inert Gas Process uses a consumable electrode of wire form and an inert gas shield of carbon dioxide when welding carbon steel..  The wire electrode provides a continuous feed of filler metal allowing welds of any length without stopping.   The inert gas shield eliminates slag and allows cleaner and stronger weld..   This process is used widely for automated welding using robots.


The Tungsten Inert gas (TIG) system uses a non-consumable electrode of tungsten and also provides an inert gas shield of argon or helium.
This process was orginally developed for welding magnesium and it is now used for welding aluminium, copper, stainless steel, and a wide range of other metals that are difficult to weld.  Consumable rods may be used depending on the type of weld and the thickness of weld.
Welding process Designations
The welding process designations provided below are based on BS EN ISO 4063 and are used when identifying welds to BS EN 22553
1 Arc welding
11 Metal-arc welding without gas protection.
111 Metal-arc welding with covered electrode.
112 Gravity arc welding with covered electrode.
113 Bare wire metal-arc welding.
114 Flux cored wire metal-arc welding.
115 Coated wire metal-arc welding.
118 Firecracker welding.

13 Gas-shielded metal-arc welding
131 MIG welding: metal-arc inert gas welding
135 MAG welding: metal-arc active gas welding
136 Flux-cored wire metal-arc welding with active gas shield
14 Gas-shielded welding with non-consumable electrode
141 TIG welding: tungsten inert gas arc welding
149 Atomic-hydrogen welding

15 Plasma arc welding

18 Other arc welding processes
181 Carbon-arc welding
185 Rotating arc welding

2 Resistance Welding

21 Spot welding

22 Seam welding
221 Lap seam welding
225 Seam welding with strip.

23 Projection welding

24 Flash welding

25 Resistance butt welding

29 Other resistance welding processes
291 HF (High-Frequency) resistance welding

3 Gas welding

31 Oxy-fuel gas welding
311 Oxy-acetylene welding
312 Oxy-propane welding
313 Oxy-hydrogen welding


32 Air-fuel gas welding
321 Air-acetylene welding
322 Air-propane welding
4 Pressure welding

41 Ultrasonic welding

42 Friction welding

43 Forge welding

44 Welding by high mechanical energy
441 Explosive welding
45 Diffusion welding

47 Gas pressure welding

48 Cold pressure welding.

Other welding processes

71 Thermit welding

72 Electro-slag welding

73 Electro-gas welding

74 Induction welding

75 Light radiation welding
751 Laser beam welding
752 Arc image welding
753 Infrared welding


76 Electron beam welding

77 Percussion welding

78 Stud welding
781 Arc stud welding
782 Resistance stud welding

0 comments:

Post a Comment